For my simulated circuit, setting cutoff CV to 1.35 to get results comparable to my previous erroneous circuit. Resonance CV control is still a bit wonky but now it uses an expo converter. I have set reso to 0.5V (but there is a missing current limiting resistor in the circuit) to get 13dB resonance.
24dB LP:
- Cutoff: 500Hz
- Resonance: 13dB at 1.24kHz
24dB HP:
- Cutoff 3.2kHz
- Resonance: 13.2dB at 1.4kHz
12dB LP + 12dB HP,
12dB HP + 12 dB LP
- LP cutoff: 2.6kHz
- HP cutoff: 694Hz
- Center: 1.33kHz
- 13.4dB attenuation on top
- Resonance: Top has 1.1dB amplification
12dB LP with connection to second stage
- Cutoff: 772Hz
- Base attenuation 1.44dB
- Resonance: Top has 6.6dB amplification over base at 1.25kHz, base is -13dB
12dB LP without connection to second stage
- Cutoff: 769Hz
- Base amplification 1.4dB
- Resonance: Top has 6.6dB amplification over base at 1.25Hz, base is -10dB
12dB HP with connection to second stage
- Cutoff: 2.1kHz
- Base attenuation 1.7dB
- Resonance: Top has 6.4dB amplification over base at 1.4kHz, base is -13dB
12dB HP without connection to second stage
- Cutoff: 2.1kHz
- Base amplification 1.1dB
- Resonance: Top has 6.65dB amplification over base at 1.4kHz, base is -10dB
BTW: I have found another serious issue. The cap on the output amp prevents the filter from getting a higher LP cutoff than 14k. removing it gives a cutoff of about 20kHz at most. This does not seem right compared to the promised 5-50kHz in the datasheet.
No comments:
Post a Comment